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1 Naive set theory

A set is a collection of objects. An object a belonging to A, is called an element
of A. We write a ∈ A to denote that a belongs to A.

We are especially interested in certain sets of numbers:

• The natural numbers:

N = {0, 1, 2, 3, 4, 5, . . .}

• The integers (whole numbers):

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

• The rational numbers:

Q =
{a

b

∣∣∣ a ∈ Z, b ∈ N
}

Two rational numbers a1

b1
and a2

b2
are equal, if a1 · b2 = b1 · a2.

• The real numbers denoted R. It is difficult to give a short and easy to
understand description of real numbers. Naively we could say that real
numbers are all the numbers missing from the rational numbers. A more
correct definition would be “all the numbers that can be approximated
arbitrarily precise by a sequence of rational numbers”, or “the algebraic
completion of the rational numbers”. Neither of these are easy to get to,
so we shall stick with the first, naive, description.1

2 Rules for addition and multiplication

Addition and multiplication satisfy a number of rules that allow us to simplify
arithmetic expressions.

1In reality, these definition are not that hard to get to. An interested student would be
able to get to them in a couple of weeks
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1. Associativity: Both addition and multiplication are associative, i.e. for all
a, b, c ∈ R, we have that

a+ (b+ c) = (a+ b) + c

a · (b · c) = (a · b) · c

For example, 2 + (3 + 4) = (2 + 3) + 4 = 9

2. Commutativity: Both addition and multiplication are commutative, i.e.
for all a, b ∈ R, we have that

a+ b = b+ a

a · b = b · a

For example, 4 + 2 = 2 + 4 = 6.

3. Distributivity: Multiplication distributes over addition, i.e. for all a, b, c ∈
R, we have that

a · (b+ c) = a · b+ a · c
(b+ c) · a = b · a+ c · a

4. Additive identity 0, i.e. for all a ∈ R

a+ 0 = a and 0 + a = a

5. Multiplicative identity 1, i.e. for all a ∈ R

a · 1 = a and 1 · a = a

6. Additive inverse: Every a ∈ R has an additive inverse −a such that

a+ (−a) = 0

We also write a− b instead of a+ (−b).

7. Multiplicative inverse: Every non-zero a ∈ R has a multiplicative inverse
a−1 (also written 1

a ) such that

a · a−1 = 1

We also write a
b or a/b (“a divided by b”) instead of a · b−1.

3 Fractions

A fraction is a powerful way to describe division of two numbers. Let a, b ∈ R
with b ̸= 0. We then write

a

b
We call a the numerator and b the denominator.
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3.1 Rules for fractions

1. Addition and subtraction with common denominator:

a

b
± c

b
=

a± c

b

where a, b, c ∈ R with b ̸= 0.

2. The general formula for addition and subtraction is:

a

b
± c

d
=

ad± bc

bd

where a, b, c, d ∈ R with b, d ̸= 0.

3. General formula for multiplication:

a

b
· c
d
=

a · c
b · d

where a, b, c, d ∈ R with b, d ̸= 0.

4. General formula for division:

a
b
c
d

=
a

b
· d
c
=

a · d
b · c

where a, b, c, d ∈ R with b, c, d ̸= 0.

3.2 Simplifying fractions

A fraction is in simplest form when the numerator and denominator have no
common factors (or divisors) other than 1.

Example: The rational number 2
4 is not in its simplest form. But 1

2 is.

Every rational number is equal to one in the simplest from. The following rules
can be used to simplify fractions

1. If the numerator and the denominator are equal, a
a = 1

1 =
1

1
=

2

2
=

3

3
=

4

4
= ....

2. A fraction a
1 with denominator 1 is written simply as a.

5

1
= 5

24

1
= 24

−7

1
= −7

3. A fraction 0
a is equal to 0.

0

8
= 0

0

56
= 0

0

−11
= 0
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4. Note: A fraction a
0 is undefined

7

0
is undefined

−18

0
is undefined

5. Let a,m, n be real numbers with a, n ̸= 0. Then

a ·m
a · n

=
m

n

4 Exponentiation

Let n ∈ N be a natural numbers, and a ∈ R a real. Define

an =

n times︷ ︸︸ ︷
a · a · . . . · a, a0 = 1, a−n =

1

a · a · . . . · a︸ ︷︷ ︸
n times

We call a the base number and n the exponent.

NOTE: This is the definition of what exponents mean. Hence any time we
see ab we can substitute the above if we want.

4.1 Rules for exponentiation:

In the following, let a, b ∈ R, while m,n ∈ N.

1. Multiplication with common base number:

an · am = an+m

2. Division with common base number:

an

am
= an−m

3. Multiplication with different base, same exponent:

an · bn = (a · b)n

4. Division with different base, same exponent:

an

bn
=

(a
b

)n

5. Exponentiation of exponentiation :

(an)m = an·m
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4.2 Rational exponents

In the following, let a ∈ R+, and m,n ∈ N.

Definition: We define exponentiation with rational exponents as:

am/n = n
√
am

The above rules for natural exponents are also valid for rational exponents

4.3 Logarithms

The logarithm is the inverse of exponentiation. More precisely, if bx = y, then
the logarithm of y to base b is x, which we write as logb y = x. In other words,
the logarithm gives us the exponent x to which we must raise the base b so that
we obtain the result y.

4.4 Rules for logarithms

In the following, let a ∈ R, and b, c, x, y ∈ R+ such that b ̸= 1 and c ̸= 1.

1. Addition with common base:

logb(x · y) = logb x+ logb y

2. Subtraction with common base:

logb

(
x

y

)
= logb x− logb y

3. Multiplication:
logb (x

a) = a logb x

4. Division:

logc x =
logb x

logb c

5. Exponentiation:
blogb y = y
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5 Binomial theorems for squares

Let a, b ∈ R be given. Then we have the following:

First formula:
(a+ b)2 = a2 + 2ab+ b2

Second formula:
(a− b)2 = a2 − 2ab+ b2

Third formula:
(a+ b)(a− b) = a2 − b2

6 Equations

An equation is a predicate with one or more free variables (typically denoted by
x, y, z, . . .)

The goal in solving an equation is to get concrete values for the free variables,
such that the equations holds for these concrete values.

We talk about the variable set as the set each variable comes from. For in-
stance, which values can x take in the following?

1

x
=

√
x and

x+ 5

x+ 2
=

6

2x+ 4

The basic technique is applying identical algebraic transformations on both
sides of the equality sign.

We denote the set of all solutions as the solution set. There may be one,
several, none or infinitely many solutions to any given equation.
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6.1 An example

We look at the equation:
x√

4x− 1
=

1

2

What values can x take?

4x− 1 > 0 ⇔ x >
1

4

We can now do the following transformations:

x√
4x− 1

=
1

2
⇒ x2

4x− 1
=

1

4

⇔ x2 =
1

4
(4x− 1)

⇔ 4x2 = 4x− 1

⇔ 4x2 − 4x+ 1 = 0

⇔ (2x− 1)2 = 0

⇔ 2x− 1 = 0

⇔ 2x = 1

⇔ x =
1

2

We note that x = 1
2 > 1

4 , and hence we can accept the solution.

6.2 Absolute value

The absolute value of a real number a, written as |a|, is defined as follows: If a
is negative, then |a| = −a, otherwise |a| = a. That is, |a| is always positive.

Examples:

1. |3| = 3 and | − 3| = 3.

2. Consider the equation |x+ 5| = 2. What values can x take?

By the definition of absolute value, we know that

x+ 5 = 2 or x+ 5 = −2

Therefore,

x = −3 or x = −7
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7 Systems of linear equations:

Equations can be viewed as restrictions on the free variables x, y, z, . . .. Given
two equations:

y = −2x+ 3 and y = −3

2
x+ 2

We want to find values for x and y such that both equations are solved simul-
taneously.

The basic technique for systems of equations, is the do substitution from one
equation to the other. We isolate one variable, and the substitute it into the
other. In the above example the variable y is isolated in both equations and
hence we can substitute in from one to the other:

y = −2x+ 3 ⇔ −3

2
x+ 2 = −2x+ 3

⇔ −3

2
x = −2x+ 1

⇔ −3x = −4x+ 2

⇔ x = 2

We can now substitute the (concrete) value for x into the second equation, to
get a (concrete) value for y:

y = −3

2
x+ 2 ⇔ y = −3

2
· 2 + 2

⇔ y = −3 + 2

⇔ y = −1

To check our solution we insert the concrete values into our two equations, and
see if the reduce to identities:

y = −2x+ 3 ⇔ −1 = −2 · 2 + 3 ⇔ −1 = −4 + 3

and

y = −3

2
x+ 2 ⇔ −1 = −3

2
· 2 + 2 ⇔ −1 = −3 + 2

Since the holds we accept the solution x = 2, y = −1.

8 Quadratic equations

A quadratic equation is a equation on the form:

ax2 + bx+ c = 0, a ̸= 0
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Theorem: The equation:

ax2 + bx+ c = 0, a ̸= 0

has the solutions:

x =
−b+

√
b2 − 4ac

2a
and x =

−b−
√
b2 − 4ac

2a

if b2 − 4ac ≥ 0.

8.1 Substitution in quadratic equations

Sometimes we can rearrange higher order equations to look like quadratic equa-
tions. We call this principle substitution.

In general, we substitute one variable for another the reduce the degree2 of
the equation. If we look at

x4 − x2 − 12 = 0, and 2x4 − 5x2 +
9

8
= 0

we see that if we choose z = x2 we can change these to:

z2 − z − 12 = 0, and 2z2 − 5z +
9

8
= 0

Both equations are now quadratic, and hence we can use the theorem for
quadratic equations. We can then obtain a solution for z and use the solu-
tion to get a solution for x.

Note that we will often get more then two solutions when doing equations of
higher degrees. In general, for a n degree equation we can get up to n solution.

2The degree of an equations of the highest exponentiation of a free variable. In the examples
the degree is 4
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